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Prediction of cutting parameters as a function of cutting force, surface roughness and cutting temperature is very impor-
tant in face milling operations. In the present study, the effect of cutting parameters on the mentioned responses were
investigated by using artificial neural networks (ANN) which were trained by using experimental results obtained from
Taguchi’s L8 orthogonal design. The experimental results are compared with the results predicted by ANN and the Tagu-
chi method. By training the ANN with the results of experiments which are corresponding with the Taguchi L8 design,
with only eight experiments an effective ANN model is trained. By using this network model the other combinations of
experiments which did not perform previously, could be predicted with acceptable error.

Keywords: face milling; artificial neural networks; Taguchi; prediction

1. Introduction

The importance of low cost, high quality products and shortened manufacturing time is undisputed in industrial applica-
tions. Improved computer numerical control (CNC) technologies are capable of achieving high accuracy and very short
processing times. As well as cutting tool and machine tool capabilities, cutting parameters are also effective in achieving
these goals. Face milling is a common machining method in most industrial applications and much research has been
done to determine the cutting parameters for material/tool duo. Output measurements (responses), namely cutting forces,
surface roughness or tool wear, are investigated widely in the literature (Altıntas 2000; Aykut et al. 2007; Bernardos
and Vosniakos 2002; Escalona and Maropoulos 2010; Ghosh et al. 2007; Kaya, Oysu, and Ertunc 2011). Neural net-
works are used for prediction and optimisation of cutting parameters in milling operations to obtain desired responses
such as cutting force, surface roughness and tool wear in recent years.

It is clear that the prediction of cutting parameters as a function of cutting force, surface roughness and cutting tem-
peratures is very important. One of the resultant phenomenon of the cutting parameters is cutting force. Influence of the
machining conditions on cutting forces for milling was investigated by Aykut et al. (2007) and Kaya, Oysu, and Ertunc
(2011). The cutting tests were carried out under dry conditions using uncoated inserts. In the study presented by Aykut
et al. (2007), feed-forward back-propagation neural network was used for modelling the effects of machinability on chip
removal cutting parameters for face milling of stellite 6 in asymmetric milling processes. Cutting forces with three
dimensions were predicted by changing cutting speed (Vc), feed rate (f) and depth of cut (ap) under dry conditions.

Other indicator of the quality of machining is surface roughness. Saglam and Unuvar (2003) used feed-forward
back-propagation neural network (NN) for tool condition monitoring in face milling and evaluated against cutting force
data. NN was used for feature selection in order to estimate flank wear (Vb) and surface roughness (Ra) during the
milling operation. Cutting speed, feed rate, depth of cut and two cutting force components are used as cutting
parameters. Bajic, Lela, and Zivkovic (2008) examined the influence of cutting parameters on surface roughness in face
milling by using NNs. Cutting speed, feed rate and depth of cut factors are used as the predictor of the surface rough-
ness. El-Sonbaty et al. (2008) used feed-forward back-propagation neural network for the analysis and prediction of the
relationship between the cutting conditions and the corresponding fractal parameters of machined surfaces in face
milling operation to determine the appropriate cutting conditions, in order to achieve specific surface roughness profile
geometry, and hence achieve the desired tribological performance (e.g. friction and wear) between the contacting
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surfaces. The input parameters of the artificial neural network (ANN) models were the cutting parameters such as rota-
tional speed, feed, depth of cut, pre-tool flank wear and vibration level. The output parameters of the model were the
corresponding calculated fractal parameters such as fractal dimension ‘D’ and vertical scaling parameter ‘G’. Lela, Bajic,
and Jozic (2009) examined the influence of cutting speed, feed, and depth of cut on surface roughness in face milling
process by using support vector machines (SVM), and Bayesian neural network (BNN) and searched the influence of
cutting parameters on surface roughness. The prediction of surface roughness at face milling with ANNs has also been
investigated by Munoz-Escalona and Maropoulos (2010). They developed different ANN; they selected radial base neu-
ral networks (RBNN), feed forward back propagation neural networks (FF-BP NN) and generalised regression neural
networks (GRNN) for the prediction of surface roughness (Ra) and the data used for training these networks were
derived from experiments conducted using a high-speed milling machine. They applied the Taguchi method which is
the well-known design of experiment technique that is used to reduce the time and cost of experiments. They observed
that FF-BP NN is achieving the best results. They used five inputs (cutting speed, feed per tooth, axial depth of cut,
chip width and chip thickness) and concluded that strong correlation between chip thickness and the surface roughness
followed by the cutting speed. Gan, Huang, and Zheng (2010) developed least squares support vector machines (LS-
SVM) for the analysis and prediction of the relationship between the cutting conditions and the corresponding fractal
parameters of machined surfaces in face milling operations in order to achieve specific surface roughness profile geome-
try, and hence achieve the desired tribological performance (e.g. friction and wear) between the contacting surfaces. The
input parameters of the LS-SVM were the cutting parameters such as rotational speed, feed, and depth of milling. The
output parameters of the LS-SVM were the corresponding calculated fractal parameters: fractal dimension ‘D’ and verti-
cal scaling parameter ‘G’. Razfar et al. (2010a) proposed a new approach for determination of the optimal cutting
parameters to obtain minimum surface roughness in face milling of X20Cr13 stainless steel by coupling feed forward
artificial neural network and the harmony search (HS) algorithm to obtain minimum surface roughness. Razfar et al.
(2010b) presented an approach to the determination of the optimal cutting parameters to create minimum surface rough-
ness levels in the face milling of X20Cr13 stainless steel. The proposed approach is to use a particle swarm optimisation
(PSO)-based neural network to create a predictive model for the surface roughness level that is based on experimental
data collected on X20Cr13. The optimisation problem is then solved by using a PSO-based neural network for optimisa-
tion system. In the following year Razfar et al. (2011) presented a new approach to determine the optimal cutting
parameters leading to minimum surface roughness in face milling of X20Cr13 stainless steel by coupling FF BP-NN
artificial neural network and HS algorithm.

Since cutting forces are directly related to increase of cutting speed, cutting speed is a parameter that directly affects
tool life (Altintas 2000). Other types of literature are about the estimation of tool wear using neural networks. Lin and
Lin (1996) used NN to identify the tool wear conditions by using the inputs the mean values of cutting forces, feed rate,
and work piece geometry. The NN is trained to estimate the average flank wear on cutter inserts. Ghosh et al. (2007)
proposed to develop a NN-based sensor fusion model for tool condition monitoring (TCM). Some features extracted
from a number of machining zone signals, namely cutting forces, spindle vibration, spindle current, and sound pressure
level had been fused to estimate the average flank wear of the main cutting edge. As a conclusion cutting force signals
features predict tool wear fairly well.

Cutting temperature is also importance. When the literature is reviewed, it is observed that the cutting forces, surface
roughness and especially the temperature are not searched for the cut depth, feed rate, cutting speed, and coolant factors
together. This observation has been the motivation for the present work.

The remaining sections are organised as follows. Section 2 describes the materials and methods. The experimental
design and FF BP-NN model analysis with an illustrative example are given in Sections 3 and 4, respectively.
Discussions on the results and conclusions are pointed out in Sections 5 and 6.

2. Materials and methods

In this study, the effect of cutting parameters (cut depth, feed rate, cutting speed and coolant) on cutting force, surface
roughness and cutting temperature were investigated. Johnford VMC 850 CNC Machining Centre was used to perform
these experiments. Work piece dimension, tool diameter and geometry selection were made by considering ISO 8688
tool life testing in milling Part 1 standards. Cutting parameters and the properties of tools and work pieces used in these
experiments are given in Table 1. Optimum milling parameters were selected according to catalogue values for tool
supplier’s document.

For the force measurements Kistler 9257B 3-Component Dynamometer and Kistler 5070A Amplifier were used as
shown in Figure 1. In this setup, a fixture is designed to support the work pieces to dynamometer using M8 at 8 point.
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The directions of cutting forces are shown in Figure 2. Based on these configuration, the resultant force and normal

force will be given as F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
n þ F2

x

p
and Fn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
y þ F2

z

q
, respectively. Temperatures are recorded with 1ms period

using Pico TC-08 and Picolog Recorder Software. The values of temperatures are calculated by taking the average value
of eight thermocouples for each experimental runs. Mahr Perthometer type M1is used for surface roughness measure-

Table 1. Experimental conditions.

Work piece
SAE 1050 (AISI 1050)

Chemical composition (%) C Si Mn Cr P S Mo N
0.49 0.19 0.65 0.03 0.01 0.005 0.01 0.08

Dimensions (mm) 75 � 375 � 20
Tool holder AFR 75 0125 12 R06 4 0, Dia 125mm, 6 teeth
Insert Bohler SPKN 1203 SBF
Cutting parameters
Cut depth (mm) 1.25 – 2
Feed rate (mm/teeth) 0.05 – 0.1
Cutting speed (m/min) 100 – 130
Coolant Dry – wet

Coolant Rocol ultracut 390H, 20.6 °C, Ph 10.10

Figure 1. Experimental setup used for force and temperature measurements.

Figure 2. Schematic representations of the force directions.

3406 U. Yalcin et al.

D
ow

nl
oa

de
d 

by
 [

B
al

ik
es

ir
 U

ni
ve

rs
ity

] 
at

 0
8:

34
 1

9 
M

ar
ch

 2
01

5 



ment (measures Ra in μm, stylus travel 0.8mm, traversing speed 0.5mm/s). Cutting forces are also recorded to another
computer using 8 channel 5017B Amplifier and 9257B Dynometer via DynaWare software (Figure 1).

The experiments were carried out for eight samples in total that correspond to different cutting parameters. It has
been well known that relative positions of tool and work piece have an important effect on the output of the face mill-
ing operations. Since the tool wear is more crucial than the tool chipping and breakage for tool life the relative positions
of tools and work pieces are applied symmetrically in our experiment. Figure 3 shows the assembly method of thermo-
couples to the work pieces. The depth of holes for thermocouples should be the same in all eight to take the precise
measurements. The pressure plate and spring is used to continuously press the thermocouples to the work piece.

3. Experimental design

In this study, four factors (i) cut depth, (ii) feed rate, (iii) cutting speed and (iv) coolant, and two control levels for each
control factor were considered, as shown in Table 2. The experiments performed in the present study are not only a time
consuming experiment but also cost minimisation in another aspect. As is well known in the literature, the Taguchi
method requires less experiment when compared with response surface methodology (RSM) or another design of experi-
ment (DOE) techniques. Another reason for using the Taguchi method is having string factors in the system such as
coolant (factor levels: dry or wet). RSM depends on matrix multiplications and can produce optimum solutions with
decimals. So RSM is not an appropriate method for the given problem presented in this study. Additionally RSM
required a minimum of 30 experiments (for central composite design for four factors) for our problem. Factorial design
may be used instead of RSM, but the type of systems shown in the present study may reveal quadratic relations
between the factors and factorial design which is not appropriate for this type of problem. Briefly, the Taguchi analysis
requires less experiments (this is required for cost and time consuming) for our problem and this method seems more
appropriate when it is compared with other commonly used design of experiment techniques (Castillo 2007; Giesbrecht
and Gumpertz 2004; Mason, Gunst, and Hess 2003; Montgomery 2001; Roy 2001). Required degrees of freedom to
determine the appropriate orthogonal array for Taguchi Design are displayed in Table 3.

The Taguchi method (and other orthogonal arrays) may be used to train small ANN very quickly in a variety of
tasks and they could be successfully used to train single layer networks with no difficulty. However, interactions

Figure 3. Connection of thermocouples.
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between factors precluded the successful reliable training of multi-layered networks (Viswanathan et al. 2005). The pres-
ent study is aimed at training ANN with a minimum number of experimental inputs (for time and cost saving) and
comparing the results of ANN with the results obtained from Taguchi for the same experimental design for performance
comparison. If the possible first order interactions between the main factors are not considered, degrees of freedom are
calculated according to Table 3. The calculated degree of freedom is four. But for four factor, two level design, Taguchi
analysis required a minimum of eight experiments. So the closer design to the calculated degrees of freedom with mini-
mum number of experiments is L8 which requires only eight experiments. To reduce the number of tests, an L8 (24)
orthogonal array that only needs eight experimental runs was adopted. The minimum total degrees of freedom required
are four and they are listed in Table 3. As a result, an L8 (24) orthogonal array, which has four degrees of freedom with
two levels is the most suitable one. The orthogonal array can be seen in Table 4, the physical experimental layout is
shown in Table 5.

4. FF BP-ANN model analysis

At the base of the Taguchi analysis, a feed forward back propagation artificial neural network (FF BP-ANN) was
employed for the training, simulating and predicting by using MATLAB (see Ham and Kostanic, 2001 for details of FF
BP-ANN topology). Input matrix is calculated by dividing each column of results that are given in Table 5 to maximum
value of its each column, and by this way all the results became smaller than 1 and normalised. Preliminary investiga-
tions are conducted to choose a suitable network topology and training algorithm for MLP. According to the experimen-
tal design performed for investigating the appropriate network topology of MLP network, the design parameters for
number of hidden layers (from 1 to 3 increasing one by one), number of neurons at each layer (from 2 to 12 increasing

Table 2. List of actual and corresponding coded values of control factors and their levels.

Level

Factors �1 1

Cut depth (mm) 1.25 2.00
Feed rate (mm/teeth) 0.05 0.10
Cutting Speed (m/min) 100 130
Coolant Wet Dry

Table 3. Required degrees of freedom.

Factors Degrees of freedom

Cut depth 1
Feed rate 1
Cutting speed 1
Coolant 1

Total 4

Table 4. Taguchi L8 (24) orthogonal array.

Factors

Experiment number Cut depth Feed rate Cutting speed Coolant

1 �1 �1 �1 �1
2 �1 �1 �1 1
3 �1 1 1 �1
4 �1 1 1 1
5 1 �1 1 �1
6 1 �1 1 1
7 1 1 �1 �1
8 1 1 �1 1

3408 U. Yalcin et al.

D
ow

nl
oa

de
d 

by
 [

B
al

ik
es

ir
 U

ni
ve

rs
ity

] 
at

 0
8:

34
 1

9 
M

ar
ch

 2
01

5 



two by two), type of activation function (purelin, tansig, logsig), learning rates (from 0.001 to 0.01 increasing with step
size 0.0009) and momentum constants (from 0.2 to 0.9 increasing with step size 0.1) are used. The performance
measurement is determined as mean square error (mse) and 0.001 is the target mse value. If this performance goal is
not met then maximum 250,000 iterations will be performed and mse will be plotted for every 500 iterations. The train-
ing was stopped whenever either the error goal has been achieved or the maximum allowable number of training epochs
has been met. The mse result of each parameter combination (in total 3780 combinations) is recorded to a matrix that is
defined in MATLAB. Experimental runs are carried out to determine the mse for each combination of parameters
serially. The parameter combination that gives the minimum mse is selected from the records as optimum training
parameters. Minimum mse is reached for network with two hidden layers each have eight neurons with tansig activation
function and momentum constant: 0.8, learning rate 0.0028 are found as the optimum training parameters. The network
is trained by using the programme codes of Matlab that are given below.

P0=[�1 �1 �1 �1; �1 �1 �1 1; �1 1 1 �1; �1 1 1 1; 1 �1 1 �1; 1 �1 1 1; 1 1 �1 �1; 1 1 �1 1]; %Outputs

T=P0’;

Tpre = [0.375115207 0.231870229 0.648967552; 0.410138249 0.261927481 0.796460177; 0.546543779
0.771946565 0.8820059; 0.534101382 0.827290076 1; 0.528110599 0.46898855 0.867256637; 0.653456221 1
0.8820059; 1 0.544847328 0.89380531; 0.852534562 0.858778626 0.899705015]; %Inputs

P = Tpre’;

[Pn,minP,maxP,tn,minT,maxT] = premnmx(P,T);

[S0,Q] = sise(P);

S1 = 8; S2 = 8; S3 = 4;

Net = newff(minmax(P),[S1,S2,S3],{‘tansig’,‘tansig’,‘tansig’},‘traingd’);

net.trainParam.epochs = 250,000;

net.trainParam.goal = 0.001;

net.trainParam.mc = 0.80;

net.trainParam.show = 500;

net.trainParam.lr = 0.0028;

[net,tr] = train(net,P,T);

save TrainedMLP net

The training performance of the given network is presented in Figure 4. It is clearly observed from Figure 4 that the
goal of 0.1% error is reached at 210,436 epochs.

Results of the ANN predictions with training data set are listed in Table 6 and their rounded and rearranged forms
are given in parenthesis with bold.

It is clearly observed from Table 6 that the memorisation capability of the net is good enough for the training data
set. The trained network model was then tested using three experimental data points (check data) which were not used
in the training process. After performing these three experiments, for the results of experiments, input factors are
predicted from the ANN model. The results predicted from the ANN model are compared with those obtained by exper-
iments in Table 7 and Table 8 for three sets of check data.

Table 5. Physical layout for the experiments and experimental results.

Factors Results

Experiment
number

Cut
depth

Feed
rate

Cutting
speed Coolant

Cutting force
(Newton)

Surface roughness (Ra in
μm)

Cutting temperature
(oC)

1 1.25 0.05 100 Wet 814 0.486 220
2 1.25 0.05 100 Dry 890 0.549 270
3 1.25 0.1 130 Wet 1186 1.618 299
4 1.25 0.1 130 Dry 1159 1.734 339
5 2 0.05 130 Wet 1146 0.983 294
6 2 0.05 130 Dry 1418 2.096 299
7 2 0.1 100 Wet 2170 1.142 303
8 2 0.1 100 Dry 1850 1.8 305
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It is seen from Table 8 that the ANN prediction is in good agreement with the experimental results. To obtain mini-
mum response values of cutting forces, surface roughness, and temperature; the expected outputs of the system [cutting
forces, surface roughness, temperature] = [0, 0, 0] is entered as input for the ANN model and the cutting parameters are
predicted from the ANN model. The aim is to obtain the optimum cutting parameters. ANN model is predicted the

Figure 4. Training performance of the neural network.

Table 6. List of ANN predictions with training data set.

Results ANN prediction for input factor levels

Experiment numberCutting forceSurface roughnessCutting temperature Cut depth Feed rate Cutting speed Coolant

1 0.375115207 0.231870229 0.648967552 �0.9902 (�1) �0.9730 (�1) �0.9786 (�1) �0.9817 (�1)
2 0.410138249 0.261927481 0.796460177 �0.9714 (�1) �0.9951 (�1) �0.9746 (�1) 0.9700 (1)
3 0.546543779 0.771946565 0.8820059 �0.9687 (�1) 0.9847 (1) 0.9749 (1) �0.9682 (�1)
4 0.534101382 0.827290076 1 �0.9535 (�1) 0.9481 (1) 0.9762 (1) 0.9442 (1)
5 0.528110599 0.46898855 0.867256637 0.9545 (1) �0.9462 (�1) 0.9704 (1) �0.9494 (�1)
6 0.653456221 1 0.8820059 0.9608 (1) �0.9633 (�1) 0.9715 (1) 0.9963 (1)
7 1 0.544847328 0.89380531 0.9939 (1) 0.9722 (1) �0.9813 (�1) �1.0000 (�1)
8 0.852534562 0.858778626 0.899705015 0.9718 (1) 0.9768 (1) �0.9572 (�1) 0.9873 (1)

Table 7. Check data set.

Factors Experimental results

Experiment number Cut depth Feed rate Cutting speed Coolant Cutting force Surface roughness Cutting temperature

9 1 �1 �1 1 1396 1.002 278
10 �1 �1 1 �1 828 0.932 251
11 1 �1 �1 �1 1861 0.485 267

3410 U. Yalcin et al.
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cutting parameters as �0.9967 (�1), �0.9588 (�1), �0.8691(�1), �0.9988 (�1) for cut depth, feed rate, cutting speed,
and coolant; respectively. In other words, for 1.25 cut depth, 0.05 feed rate, 100 cutting speed, and wet cutting;
minimum cutting force, surface roughness, and temperature values are obtained.

For the experimental results of physical layout that is given in Table 5, Taguchi analysis is performed with ‘smaller
is better’ criteria by using Minitab Statistical Package Program. Signal-to-Noise ratios (S/N) are displayed in Table 9 for
each experiment. For minimising cutting force, surface roughness and temperature together; S/N ratios for each experi-
mental runs are calculated from Minitab. Minitab uses the formula given below in Equation (1) to calculate S/N ratios
for ‘smaller is better’ criteria:

S=N ¼ �10 log
X

Y 2=n
� �� �

(1)

For example for the first experiment in Table 5 (cut depth: 1.25, feed rate: 0.05, cutting speed: 100, and coolant:
wet) S/N ratio is calculated as

Table 9. S/N ratios for L8 design.

Experiment number 1 2 3 4 5 6 7 8

S/N Ratios �53.7475 �54.5990 �56.9781 �56.8670 �56.6893 �58.4512 �62.0418 �60.6887

Figure 5. Main effect plot for S/N ratios of experimental results.

Table 8. List of ANN predictions with check data set.

Results
Normalised expected results for

ANN Prediction
ANN Prediction

For Input Factor Levels

Experiment
number

Cutting
force

Surface
roughness

Cutting
temperature

Cutting
force

Surface
roughness

Cutting
temperature

Cut
depth

Feed
rate

Cutting
speed Coolant

9 1396 1.002 278 0.6433 0.4781 0.8201 0.9997 (1) �0.9191 (�1) �0.9748 (�1) 0.8759 (1)
10 828 0.932 251 0.3816 0.4447 0.7404 �0.9980 (�1) �0.9968 (�1) 0.9129 (1) �0.9056 (�1)
11 1861 0.485 267 0.8576 0.2314 0.7876 0.9539 (1) �0.9758 (�1) �0.9998 (�1) �0.9973 (�1)
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S=N ¼ �10 log
8142 þ 0:4862 þ 2202

3

� �� �
¼ �10(log236998:7454) ¼ �10(5:37475) ¼ �53:7475 (2)

Other S/N ratios are calculated in the similar way and given in Table 9.
According to the main effect plot for S/N ratios that is given in Figure 5; 1.25 (mm) cut depth, 0.05 (mm/teeth) feed

rate, 130 (m/min) cutting speed, and wet cutting is obtained as the best parameter combination that minimise the cutting
force, surface roughness and temperature values together. It is assumed that each response factors have equal weighting.
Main effect plot for S/N ratios of experimental results for three responses and effect of each control factor to the indi-
vidual response parameters are given in Figures 5 and 6 respectively.

According to the results of Taguchi analysis that are observed from Figure 5, it is clearly observed that the most
important factors that affect the results are cut depth and feed rate. Cutting speed and coolant are less important when
they are compared with the first two factors. But when these results are compared with the results obtained from the
ANN model, it is observed that the results differ for the level of cutting speed parameter. The ANN model find out that
the level of cutting speed must be 100. According to Figure 6, effect of cutting speed to the individual responses was
different. Increased cutting speed causes high cutting temperatures, so cutting speed should be low to minimise cutting
temperatures (Abukhshim, Mativenga, and Sheikh 2006; Gurbuz, Kafkas, and Seker 2011; Ming et al. 2003; Ulas,
Demir, and Ciftci 2012). This outcome shows that the ANN model gives more accurate results when it is compared with
the results of Taguchi analysis for the given experimental results.

5. Results and discussions

The highlights of this paper can be summarised as follows:

• When the literature is reviewed, it is observed that the cutting forces, surface roughness and especially the tem-
perature is not searched for the cut depth, feed rate, cutting speed, and coolant factors together. The results
demonstrated in the present paper are new in this area.

• The ANN model given in Section 4 provides researchers with the ability to predict optimum combination of
milling parameters for the presented cutting forces, surface roughness and the temperature values to the ANN
that would be expected from the results of experiment, even for the numerous combinations of these experi-
mental results.

• In the present paper, it is observed that the given ANN model produces more acceptable results when compared
with the Taguchi analysis (such as determining the factor level of cutting speed in the case presented in this
study).

• By using Taguchi L8 design, with only eight experiments an effective ANN model is trained and by using this
model the other combinations of experiments which did not perform, can be predicted. Time and cost minimi-
sation can be carried out by this method.

6. Conclusions

The objective of this paper was to use the neural networks for determining the optimal milling parameter combinations
for the desired outputs of experiment for cutting forces, surface roughness and especially the temperature. These three
responses for the given cutting parameter set were not investigated together previously. The results demonstrated that
ANN is an effective tool for this purpose. By only using the results of eight experiments that correspond with L8
orthogonal array, an effective ANN model was trained and by using this model other combinations of experiments
which did not perform before were able to be predicted.

The minimum factor levels of experimental design (cut depth: 1.25, feed rate: 0.05, cutting speed: 100, coolant:
wet) are found as the optimum factor levels by ANN. In future research, the obtained optimum factor levels in the pres-
ent study will be investigated under a representative set of the entire solution space, including as many minima as possi-
ble. Based on the training performed with these data, the performance and generalisation capability of ANN to predict
the global minimum will be investigated.
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